
Tiddle: A Trace Description Language for Generating
Concurrent Benchmarks to Test Dynamic Analyses

Caitlin Sadowski
supertri@cs.ucsc.edu

Jaeheon Yi
jaeheon@cs.ucsc.edu

Computer Science Department
University of California at Santa Cruz

Santa Cruz, CA 95064

ABSTRACT
Dynamic analysis is a promising technique for finding con-
currency bugs in multithreaded programs. However, testing
a dynamic analysis tool can be difficult. Researchers end up
writing large amounts of small benchmark programs. Since
the benchmarks themselves are concurrent programs, they
may execute nondeterministically, complicating testing of
the analysis tool.

We propose testing dynamic analyses by writing traces
in a simple trace description language, Tiddle. Our imple-
mentation, written in Haskell, generates deterministic mul-
tithreaded Java programs for testing dynamic analyses. We
report that it is substantially easier to write programs with
incriminating bugs such as race conditions in Tiddle than
the corresponding Java source code version, reducing the
amount of source code to maintain and understand. Al-
though our implementation is targeted towards Java, the
ideas extend to any other languages which support mutable
fields and multiple threads.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation – reliability ; D.2.5 [Software Engineering]: Testing
and Debugging – testing tools; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reason-
ing about Programs – specification techniques; F.3.2 [Logics
and Meanings of Programs]: Semantics of Programming
Languages – program analysis

General Terms
Languages, Reliability, Verification

Keywords
Traces, race conditions, atomicity violations, concurrency,
dynamic analysis

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WODA ’09, July 20, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-656-4/09/07 ...$10.00.

1. INTRODUCTION
Concurrency bugs are insidious and hard to reproduce.

They appear at the whim of the system, when a particular
problematic sequence of operations occurs. Since they are
scheduling dependent, testing is not always effective: buggy
test cases will execute correctly sometimes. An alternative
solution is to use program analysis techniques to isolate gen-
eral purpose concurrency bugs like data races or atomicity
violations.

Program analysis techniques fall into two main camps:
static or dynamic. Static analyses analyze the source code.
They tend to produce many false positives (i.e. are impre-
cise) because they do not know dynamically available unifi-
cation information. A program trace or interleaving is the
sequence of operations executed by a run of a program. Dy-
namic analysis tools instrument a program, and then analyze
traces produced by the instrumented program at runtime to
find bugs in the program being executed. These tools are
typically not sound (i.e. produce false negatives) because
they are based on a particular trace, which may not be in-
dicative of all possible program behaviours. Some hybrid
tools straddle both camps; they do a post-mortem analysis
on program traces, or combine static and dynamic analysis
in some other framework.

This paper is targeted towards researchers who write dy-
namic analysis tools to find concurrency bugs in multithreaded
applications. Our dynamic analysis framework is written in
Java, and so that is the language we target. However, the
implementation could be easily extended to other languages
which support concurrency and mutable fields (e.g., C++);
this would involve some pretty printing changes in the mod-
ule which translates Tiddle ASTs to Java ASTs.

Many dynamic analysis tools exist to discover concurrency
errors in programs, such as data races [39, 38, 30, 46, 11, 32,
15], atomicity violations [42, 16, 45, 43, 27, 17, 14], and
deterministic parallelism violations [36]. The tools are often
intricate concurrent programs in their own right. Testing dy-
namic analyses involves writing many small programs that
exhibit a fault (or do not exhibit a fault) to check if the
analysis correctly runs. However, since these tests must be
multithreaded, they may not be deterministic! One (inade-
quate) method of attempting to force a deterministic sched-
ule is to pepper yield() or sleep() statements throughout
the tests; this does not guarantee determinism, even if the
statements are placed properly. The tests must also contain
a lot of boilerplate code for setting up multiple threads. In
short, they are both tedious and error-prone.

What is a better way of quickly testing dynamic analy-

ses? It is our observation that small traces exhibiting cer-
tain faults are a natural way of describing test cases. Writing
small traces on the whiteboard as an aid to discussion is nat-
ural. We have created a trace description language, Tiddle,
that captures basic concurrency notions in execution traces.
We translate traces into deterministic Java source code for
the purpose of testing dynamic analyses. This guarantees
that the same execution trace results from every run of the
program. We are able to achieve this determinism using a
key assumption: that the dynamic analysis framework can
optionally ignore specified method calls.

We have implemented a compiler, written in Haskell, which
translates Tiddle trace statements into Java source code.
The language and implementation is extensible, allowing
customization to suit the needs of the user. We also use
Tiddle to generate traces that exhibit the same behaviour
as the source trace, so as to verify that a dynamic analysis
behaves as expected on equivalent traces.

Our contributions are thus:

1. A language-agnostic domain-specific language (DSL)
for describing trace behaviour, Tiddle.

2. A compiler, implemented in Haskell, that translates
Tiddle traces into deterministic concurrent Java pro-
grams.

3. An experience report about the usefulness of Tiddle.

2. RELATED WORK

Describing Program Traces.
Tiddle is a language for describing program execution

traces. There has been some previous work on describing
program traces for various purposes. A formal look at trace
models of Prolog programs is explored in [22] for building
high-level Prolog debuggers. Several authors have looked at
simplifying, organizing and abstracting stored traces [6, 3].

The Test Behaviour Language (TBL) for traces provides a
concise way of describing and testing for trace properties [6].
Various temporal logics can express bug patterns [2] or other
arbitrary properties [9], and runtime verification systems [7]
may monitor traces for violations of patterns and properties.
Tiddle could potentially be used to specify concurrency bug
patterns and anti-patterns to look for in traces.

Some previous work uses traces to describe patterns. Gen-
erated traces that exhibit a statistical profile are used to test
architecture performance characteristics [10]. These traces
are not translated into programs, but instead run directly
on a simulator. Traces are mined for patterns of procedure
calls [19]. One could extend Tiddle to describe problematic
data access patterns for atomic-set-serializability violations
[18].

DSLs.
Tiddle is a simple DSL that captures the essence of ex-

ecution traces: a well suited domain. DSLs help eliminate
unnecessary boilerplate (“eliminate notational noise” [44])
and allow for concise, comprehensible programs. We have
used the full language design approach [44] to better capture
the practice of writing a trace on the whiteboard, and then
translating that trace to a complete Java program. Similar
in intent is Teapot [5], a domain specific language for writing
cache coherence protocols. The Teapot system generates C

code implementing a specified protocol, and has a verifica-
tion system to check protocol designs. Related systems exist
for generating code to implement security protocols in Java
[33] or C# [23]. Although the intent of these systems is sim-
ilar to Tiddle, the focus is different; Tiddle code is used to
create test cases for dynamic analysis tools, while protocol
generators are used to prototype new protocol designs.

Deterministic Replay.
There has been some prior work on deterministic replay of

multithreaded Java applications [8, 35, 4, 40]1. Essentially,
these systems record information about thread scheduling so
that a buggy execution trace can be replayed after a crash
occurs. Without a replay system in place, it may be difficult
to reproduce failures; different interleavings may not result
in an error state. Conceptually, this work is similar to ours
in that traces are used to run a Java program. The way
traces are generated and used is very different in the two
techniques. Replay captures traces from running programs;
we construct traces for purposes of understanding our anal-
ysis tools. Replay systems restrict runtime behaviour of an
existing program; Tiddle code compiles directly to deter-
ministic Java source code.

Unit Testing Concurrent Software.
MultithreadedTC [34] is a framework that allows pro-

grammers to encode scheduling information inside of unit
tests. An external clock is added to the tests, along with a
thread responsible for clock maintenance and deadlock de-
tection. Test snippets can block waiting for clock ticks or as-
sert when a tick has happened; ticks occur when all threads
in the system except the maintenance thread are blocked.
The trace of operations is not made explicit in this system,
and so it is possible to accidently generate nondeterministic
tests. Additionally, if MultithreadedTC was used to create
tests for a dynamic analysis tool, operations by the mainte-
nance thread could confuse an analysis tool. Multithread-
edTC also aims to eliminate boilerplate Java code (although
not to the degree of Tiddle). MultithreadedTC was inspired
by ConAn [26], a script based testing framework that also
uses a clock ticks to enforce specific interleavings.

Concurrency Benchmarks for Research.
There has been a recent drive to create a benchmark of

concurrency bugs, targeted at dynamic analyses [12, 13].
Eytani et al. claim that their benchmark has had an im-
pact on the research community, and is now used by sev-
eral groups. The concurrency bugs in the benchmark follow
different bug patterns, but were mostly found in programs
written by novices. In comparison, a Tiddle trace describes
a run time event pattern, and represents a lower level of ab-
straction than the benchmark programs. Tiddle allows re-
searchers to quickly and efficiently generate small and simple
test cases for their property of interest.

Most similar to our work is TMUnit [20], in which a simple
description language is used to generate workloads and test
the semantics of transactional memories. The user specifies
threads, transactions and their schedules to test a particu-
lar interleaving on a Software Transactional Memory (STM)
system. The user can also specify invariants to be checked

1Other replay systems exist for Java [24, 41], but here we
are focused on replay systems targeted at concurrency.

at each stage of the run. In contrast, specifications in Tid-
dle of whether or not the dynamic analysis flags an error
exist at a level above the Tiddle program itself. Harmanci
et al. validate their work by testing five STM systems. This
work highlights the relevance of a trace DSL beyond dy-
namic analysis frameworks.

3. SEMANTICS OF MULTITHREADED PRO-
GRAMS

We begin by describing a simple semantics of multithreaded
program traces. Refer to [36] for a similar fully formalized
operational semantics. A program consists of a number of
concurrently executing threads that manipulate shared vari-
ables x ∈ Var and locks m ∈ Lock . Each thread has a thread
identifier t ∈ Tid . For simplicity, in our programming model
variables are global.

3.1 Operations
A trace α captures an execution of a multithreaded pro-

gram by listing the sequence of operations performed by the
various threads. The set of operations that thread t can
perform include:

• rd(t, x, v) and wr(t, x, v), which read and write a value
v from variable x;

• acq(t,m) and rel(t, m), which acquire and release a
lock m;

• begin l(t) and end l(t), which demarcate each atomic
[17] or deterministic [36] block labelled l;

• fork(t, u), which forks a new thread u;

• join(t, u), which blocks until thread u terminates.

This lower level abstraction of traces allows us to ignore
objects and their composition; more complicated concur-
rency bugs boil down to short sequences of these basic op-
erations. We are concerned with the traces produced from
an actual run of a source program. These traces will be
well-formed ; they fulfill expected constraints when forking,
joining, acquiring and releasing. For example, every release
operation has a corresponding acquire operation by the same
thread earlier in the trace, and no operations by a thread u
occur in a trace prior to the forking of thread u.

3.2 Conflicts
Two operations in a trace conflict if they satisfy one of

the following four conditions:

• Communication conflict: they are by two different
threads, access the same variable, and at least one of
the accesses is a write.

• Lock conflict: they are by two different threads, and
acquire or release the same lock.

• Fork-join conflict: one operation is fork(t, u) or join(t, u)
and the other operation is by thread u.

• Program order conflict: they are performed by the
same thread.

The happens-before relation <α for a trace α is the smallest
transitively-closed relation on operations in α such that if
operation a occurs before b in α and a conflicts with b, then
a happens-before b.

Two traces are equivalent if one can be obtained from the
other by repeatedly swapping adjacent non-conflicting op-
erations. Equivalent traces yield the same happens-before
relation and exhibit equivalent behaviour. In general, dy-
namic analyses should act identically on equivalent traces.

3.3 Transactions
A transaction in a trace α is the sequence of operations ex-

ecuted by a thread t starting with a begin l(t) operation and
containing all t operations up to and including a matching
end l(t) operation. In some cases [36], the operations of all
threads forked within a transaction are also included.

4. METHODOLOGY
4.1 Tiddle Grammar

We describe the grammar of Tiddle. A BNF-style repre-
sentation is given in Figure 4.1.

trace ::= trace op
| op

op ::= rd Tid Var (Val)
| wr Tid Var (Val)
| acq Tid Lock
| rel Tid Lock
| fork Tid Tid
| join Tid Tid
| beg Tid Label
| end Tid Label

Tid ::= Int
Var ::= String
Val ::= Int
Label ::= String
Lock :: = String

Figure 1: Tiddle Grammar

In Tiddle, a trace is a list of operations. Each operation
belongs to a thread, and the thread identifier is indicated by
an integer in the first argument. Reads and writes specify a
variable and optionally a value. If a read operation specifies
a value, an assert statement is added to verify that the read
returned the expected value; variables are initialized to 0 by
default. Since the generated programs are deterministic,
this is simply a check to make sure the trace is specified
as desired. Acquires and releases specify a monitor lock.
Forks and joins specify the thread identifier for the forked or
joining thread. Begin and end operations demarcate atomic
blocks, or transactions [16].

In Java, the reads and writes correspond to accesses to
a static field. The acquires and releases correspond to a
synchronized block. Forks and joins correspond to Java’s
start() and join() methods. Begin and end operations
are Java blocks annotated as atomic. Alternatively, begin
and end operations can denote method boundaries. This
allows the generated programs to be checked with a general
“all methods are atomic” specification. These Java programs
represent simple, straightforward examples that embody the
buggy pattern described by the corresponding Tiddle trace.

Data Races.
A data race occurs when two threads simultaneously ac-

cess a shared variable, at least one access is a write, and
there is no synchronization between the two accesses.

Tiddle operations support modeling data races. Our com-
piler generates working, complete Java code from a partial
trace. There is no need to write out the full execution trace
of a program; only the relevant lines of the trace need to be
specified and other operations (e.g., forking all the threads
involved) are added automatically. Here is a data race spec-
ified in two lines (x is initially 0):

rd 1 x
wr 2 x 1

There is no explicit synchronization to prevent the trace
from being reordered to:

wr 2 x 1
rd 1 x

so the final value of x – 0 or 1 – depends on the nondetermin-
istic schedule of operations. Specifying this data race is only
two lines of Tiddle code– but these two lines are translated
to more than 50 lines of Java source code (Figure 2).

Atomicity Violations.
Atomicity is a general concurrency specification that iso-

lates program behavior of code blocks. Informally, a code
block is atomic if all executions of that code block have the
same effect as if the code block executed in isolation from
the rest of the program. The database community refers to
this property as serializability. We can describe an atomicity
violation in Tiddle:

beg 1 a
rd 1 x
wr 2 x
rd 1 x
end 1 a

The atomic block is indicated by the begin and end op-
erations, and must be equivalent to a serial trace where the
atomic block is executed without other threads interleaving.
Here, the write to x in between two subsequent reads of x
means that this trace is not equivalent to any serial execu-
tion of the atomic block. This trace compiles to about 70
lines of Java source code.

Note that the operations and their semantics reflect the
kind of dynamic analyses we are interested in: detecting
data races and atomicity violations. Tailoring the Tiddle
language to operations for different dynamic analyses, such
as detecting atomic-set-serializability violations [18] or new
types of concurrency bugs should be straightforward.

4.2 Determinism and Synchronization
Race conditions and atomicity violations are nondetermin-

istic by nature. A test program that has such bugs is diffi-
cult to use, because the error may manifest rarely and only
under specific conditions. Thus, test programs should be
deterministic – even those with nondeterministic bugs.

We use barrier synchronization to implement determinism
for otherwise nondeterministic test programs. The test pro-
gram generated from the specification trace executes only
one operation per barrier. All threads in the program move

public class Test {
static int x = 0;
static CyclicBarrier cb = new CyclicBarrier(2);
static CyclicBarrier cc = new CyclicBarrier(2);
static int numThreads = 2;

static public void await(CyclicBarrier c)
throws BrokenBarrierException,

InterruptedException {
c.await();

}

public static void main(String[] args) {
final Thread t2 = new Thread() {
public void run() {

try {
int _z = 0; //for reads
await(cc);
await(cb);
await(cc);
x = 1;
await(cb);

} catch (InterruptedException e) {
e.printStackTrace();

} catch (BrokenBarrierException e) {
e.printStackTrace();

}
}

};
final Thread t1 = new Thread() {
public void run() {

try {
int _z = 0;
await(cc);
_z = x;
await(cb);
await(cc);
await(cb);

} catch (InterruptedException e) {
e.printStackTrace();

} catch (BrokenBarrierException e) {
e.printStackTrace();

}
}

};
t1.start();
t2.start();

}
}
/* Input trace:

rd 1 x
wr 2 x 1

*/

Figure 2: Generated Java Code with Race

in lockstep from one barrier call (await()) to the next. Be-
tween each barrier call, precisely one thread executes an
operation, while all other threads simply race to the next
barrier and block.

We assume that dynamic analysis frameworks may elide
certain method calls from being instrumented. We believe
this is a reasonable assumption for any dynamic analysis
framework, since deciding what to instrument depends on
what analysis is being performed. With this capability to
elide method calls, we ignore all calls to await() when ana-
lyzing the test program. The program continues to run de-
terministically; however, the analysis tool will not observe
the barrier synchronization and correctly analyze the pro-
gram. If barrier calls were not elided from the analysis,
the test program will still run deterministically. However,
the analysis tool may now emit false positives (or negatives)
because the tool reacts to the observed contention on the
barrier.

Forks and joins present interesting synchronization issues,
because these operations change the number of threads rac-
ing to a barrier. We use CyclicBarrier from the Java
standard library, which allows recycling the barrier between
waits, although a BrokenBarrierException gets thrown if
the number of threads to trip a barrier is changed while
some threads are still blocking on that barrier. We solve
this problem by using two cyclic barriers, so that the second
of the two barriers can be reset to a new value while the
other threads are all blocking on the first one.

Optionally, all barrier synchronization may be elided dur-
ing code generation to produce small nondeterministic pro-
grams that exhibit a particular type of multithreaded bug.
This way, Tiddle can be used for test generation in situ-
ations where ignoring await() calls is not possible. These
could also be small test cases for testing static analysis tools.
Alternatively, Tiddle can be configured to add sleep() or
yield() statements to the (barrier-free) code, although the
test programs will still be nondeterministic.

4.3 Code Generation
The compiler for the Tiddle language is written in Haskell

[21]: a lazy, pure, strongly-typed functional language. Haskell
has powerful constructs that make it easy to concisely de-
fine and manipulate abstract syntax trees (ASTs). We used
Alex [29] and Happy [28] (Haskell versions of Lex and Yacc [25])
to generate a lexer and parser, respectively. The Haskell im-
plementation generates a (custom) Java AST from the trace
AST provided by the parser. Code generation is handled
by a separate pretty printer [31] for the Java AST. Haskell
is a terse language: our entire implementation totals about
300 lines of Haskell code. The functional style of Haskell
make it a natural choice for AST generation and manipula-
tion. We chose this language because of the combination of
conciseness and expressivity, and because it was fun to use.

4.4 Equivalent Traces
In addition to generating the code for one particular trace,

Tiddle can also generate all traces equivalent to a particu-
lar trace. We scan through the trace to find source opera-
tions which have only outgoing happens-before edges, and
then recursively add all interleavings of operations respect-
ing happens-before order. In essence, this pulls out all equiv-
alent traces by exploring different paths through the nodes
in the happens-before graph for a trace, only adding an oper-

ation when all prior operations which happen-before it have
been added to the trace. A series of equivalent traces can
be compiled into one (long) Java program, enabling a single
run of the analysis to confirm that all equivalent traces find
the same errors (or lack thereof).

5. A CASE STUDY
We discovered that traces are a quick way of testing dy-

namic analyses. The trace abstraction arises naturally when
thinking about concurrent program execution. Two com-
mon tasks when developing a dynamic analysis is to write
down interesting trace fragments on paper, and then to write
code that exhibits this trace for testing a dynamic analy-
sis implementation, or to mentally run through the analysis
logic for such a trace. With Tiddle, the tedium of writing
code to test a dynamic analysis is alleviated. Quick testing
aids in the development of a dynamic analysis.

We also discovered that a trace is a very nice, concise way
to describe many concurrency bugs. For example, the easiest
way to explain a data race is to produce an example of one,
and it is very easy to do just that with Tiddle.

We have used Tiddle as a development aide for dynamic
analyses. As a concrete example, we have developed Side-
Track [37], an atomicity violation analysis that looks for spe-
cific trace patterns, using Tiddle. During implementation,
we discovered a bug in how SideTrack handled nested lock-
ing by a simple Tiddle trace. When we extended our analysis
with another atomicity violation pattern, it was easy to test
that the new pattern worked properly. Finally, when refac-
toring SideTrack’s implementation, we used all the Tiddle
traces as a regression test suite. In addition, we have used
Tiddle to test the SingleTrack [36] deterministic parallelism
checker. To date, 70 or so Tiddle programs have been writ-
ten.

Our initial experiences have been very positive, and Tid-
dle has become an integral part of our workflow. By using
Tiddle, the amount of code to maintain has dropped, since
we may store traces instead of Java source files. If we think
up a tricky test case, we just write it out in Tiddle, instead
of trying to work through the example by hand.

6. FUTURE WORK
We are extending the Tiddle language to handle more Java

synchronization constructs (for example, wait and notify)
as needed. We are also implementing the ability to embed
Java code snippets directly inside a Tiddle trace. This makes
Tiddle more extensible at the expense of simplicity.

Another possible direction for future work is to create
a smaller test program that replicates faults in the origi-
nal program. We could record problematic traces of large
programs, then instantiate a smaller program that exhibits
the same multithreaded bug. This is similar to record-and-
replay, but a smaller program can replay the original prob-
lem: perhaps better suited for prototyping dynamic analy-
ses.

One way to take Tiddle to the next level would be to de-
velop it into a formal specification language for bugs such as
data races and atomicity violations. This specification lan-
guage may serve as an easier way of understanding safety
properties through violation specifications, and could be in-
tegrated into a runtime verification system like MOP [7].

We are interested in ways which Tiddle can be targeted

to help others in the program analysis community. We are
in the process of releasing Tiddle as a Haskell package in
HackageDB [1].

7. CONCLUSION
We introduce Tiddle, a simple DSL for specifying exe-

cution traces aimed at enabling testing of dynamic analy-
ses. Our trace language provides an abstraction of a multi-
threaded program execution trace. The Tiddle compiler,
written in Haskell, translates Tiddle traces into determin-
istic Java source code programs, or nondeterministic small
tests that exhibit a particular type of multithreaded bug.
This allows researchers to test the behaviour of an analy-
sis tool on a particular trace, and easily generate small test
cases. Tiddle can also be used to generate equivalent traces,
to check for consistency of an analysis across traces with the
same behaviour.

We have found Tiddle to be a valuable part of the de-
velopment process for dynamic analysis tools. We aim to
continue the dialogue on how dynamic analyses are tested
and developed.

8. ACKNOWLEDGEMENTS
Special thanks to Stephen N. Freund for originally sug-

gesting this project. Thanks to Cormac Flanagan for clar-
ifying and expanding the ideas and Kenneth Knowles for
assistance with Haskell. Thanks to Ian Pye for reading and
commenting on a final draft of this paper, even though he
was traveling at the time.

9. REFERENCES
[1] Hackage. http://hackage.haskell.org.
[2] S. Boroday, A. Petrenko, J. Singh, and H. Hallal.

Dynamic analysis of Java applications for
multithreaded antipatterns. In International Workshop
on Dynamic Analysis (WODA). ACM, 2005.

[3] R. Brown, K. Driesen, D. Eng, L. Hendren,
J. Jorgensen, C. Verbrugge, and Q. Wang. STEP: A
framework for the efficient encoding of general trace
data. In ACM SIGPLAN-SIGSOFT Workshop on
Program Anaylsis for Software Tools and Engineering
(PASTE), Nov. 2002.

[4] R. Carver and K. Tai. Replay and testing for
concurrent programs. IEEE Software, 8(2):66–74,
1991.

[5] S. Chandra, B. Richards, and J. Larus. Teapot: a
domain-specific language for writing cache coherence
protocols. Software Engineering, IEEE Transactions
on, 25(3):317–333, 1999.

[6] F. Chang and J. Ren. Validating system properties
exhibited in execution traces. In International
Conference on Automated Software Engineering
(ASE). ACM, 2007.

[7] F. Chen and G. Roşu. Mop: an efficient and generic
runtime verification framework. SIGPLAN Notices,
42(10):569–588, 2007.

[8] J. Choi and H. Srinivasan. Deterministic replay of
Java multithreaded applications. In SIGMETRICS
Symposium on Parallel and Distributed Tools (SPDT).
ACM, 1998.

[9] M. d’Amorim and K. Havelund. Event-based runtime
verification of java programs. In International
Workshop on Dynamic Analysis (WODA), pages 1–7,
New York, NY, USA, 2005. ACM.

[10] L. Eeckhout, K. de Bosschere, and H. Neefs.
Performance analysis through synthetic trace
generation. In IEEE International Symposium on
Performance Analysis of Systems and Software
(ISPASS), 2000.

[11] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: a
race and transaction-aware Java runtime. In ACM
SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 245–255,
2007.

[12] Y. Eytani, R. Tzoref, and S. Ur. Experience with a
Concurrency Bugs Benchmark. In IEEE International
Conference on Software Testing Verification and
Validation Workshop (ICSTW), 2008.

[13] Y. Eytani and S. Ur. Compiling a benchmark of
documented multi-threaded bugs. In Parallel and
Distributed Processing Symposium, 2004.

[14] A. Farzan and P. Madhusudan. Monitoring atomicity
in concurrent programs. In Computer Aided
Verification (CAV), 2008.

[15] C. Flanagan and S. Freund. FastTrack: Efficient and
precise dynamic race detection. In ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI), 2009. To appear.

[16] C. Flanagan and S. N. Freund. Atomizer: A dynamic
atomicity checker for multithreaded programs. In
ACM SIGPLAN - SIGACT Symposium on Principles
of Programming Languages (POPL), pages 256–267,
2004.

[17] C. Flanagan, S. N. Freund, and J. Yi. Velodrome: A
sound and complete dynamic atomicity checker for
multithreaded programs. In ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI), 2008.

[18] C. Hammer, J. Dolby, M. Vaziri, and F. Tip. Dynamic
detection of atomic-set-serializability violations. In
International Conference on Software Engineering.
ACM, 2008.

[19] A. Hamou-Lhadj and T. C. Lethbridge. An efficient
algorithm for detecting patterns in traces of procedure
calls. In International Workshop on Dynamic Analysis
(WODA). ACM, 2003.

[20] D. Harmanci, P. Felber, V. Gramoli, and C. Fetzer.
TMunit: Testing Transactional Memories. 4th ACM
SIGPLAN Workshop on Transactional Computing
(TRANSACT), 2009.

[21] P. Hudak, J. Hughes, S. Peyton Jones, and P. Wadler.
A history of Haskell: being lazy with class. In HOPL
III: Proceedings of the third ACM SIGPLAN
conference on History of programming languages.
ACM, 2007.

[22] E. Jahier, M. Ducassé, and O. Ridoux. Specifying
prolog trace models with a continuation semantics. In
LOPSTR: Selected Papers form the 10th International
Workshop on Logic Based Program Synthesis and
Transformation, pages 165–182, London, UK, 2001.
Springer-Verlag.

[23] C.-W. Jeon, I.-G. Kim, and J.-Y. Choi. Automatic

generation of the c# code for security protocols
verified with casper/fdr. In AINA ’05: Proceedings of
the 19th International Conference on Advanced
Information Networking and Applications, pages
507–510, Washington, DC, USA, 2005. IEEE
Computer Society.

[24] S. Joshi and A. Orso. Scarpe: A technique and tool for
selective capture and replay of program executions. In
International Conference on Software Maintenance
(ICSM), pages 234–243. IEEE, 2007.

[25] J. Levine, T. Mason, and D. Brown. lex & yacc.
O’Reilly, 2nd edition, 1992.

[26] B. Long, D. Hoffman, and P. Strooper. Tool support
for testing concurrent java components. IEEE
Transactions on Software Engineering, 29(6):555–566,
2003.

[27] S. Lu, J. Tucek, F. Qin, and Y. Zhou. Avio: Detecting
atomicity violations via access-interleaving invariants.
IEEE Micro, 27(1):26–35, 2007.

[28] S. Marlow. Happy, a parser-generator for Haskell.
http://www.haskell.org/happy.

[29] S. Marlow. A lexical analyser generator for Haskell.
http://www.haskell.org/alex.

[30] R. O’Callahan and J.-D. Choi. Hybrid dynamic data
race detection. In ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming
(PPoPP), 2003.

[31] S. Peyton Jones. A pretty printer library in Haskell.
Part of the GHC distribution at
http://www.haskell.org/ghc.

[32] E. Pozniansky and A. Schuster. MultiRace: efficient
on-the-fly data race detection in multithreaded C++
programs. Concurrency and Computation: Practice &
Experience, 19(3):327–340, 2007.

[33] D. Pozza, R. Sisto, and L. Durante. Spi2java:
Automatic cryptographic protocol java code
generation from spi calculus. In AINA ’04: Proceedings
of the 18th International Conference on Advanced
Information Networking and Applications, page 400,
Washington, DC, USA, 2004. IEEE Computer Society.

[34] W. Pugh and N. Ayewah. Unit testing concurrent
software. In International Conference on Automated
Software Engineering (ASE). ACM, 2007.

[35] M. Ronsse and K. D. Bosschere. Recplay: a fully
integrated practical record/replay system. ACM
Transactions on Computer Systems, 17(2):133–152,
1999.

[36] C. Sadowski, S. N. Freund, and C. Flanagan.
Singletrack: A dynamic determinism checker for
multithreaded programs. In European Symposium on
Programming (ESOP).

[37] C. Sadowski and J. Yi. Sidetrack: Generalizing
dynamic atomicity analysis. In Workshop on Parallel
and Distributed Systems: Testing, Analysis, and
Debugging (PADTAD), 2009. To appear.

[38] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. E. Anderson. Eraser: A dynamic data race detector
for multi-threaded programs. ACM Transactions on
Computer Systems, 15(4):391–411, 1997.

[39] E. Schonberg. On-the-fly detection of access
anomalies. In ACM SIGPLAN Conference on

Programming Language Design and Implementation
(PLDI), pages 285–297, 1989.

[40] V. Schuppan, M. Baur, and A. Biere. Jvm
independent replay in java. Electronic Notes in
Theoretical Compututer Science, 113:85–104, 2005.

[41] J. Steven, P. Chandra, B. Fleck, and A. Podgurski.
jrapture: A capture/replay tool for observation-based
testing. SIGSOFT Software Engineering Notes,
25(5):158–167, 2000.

[42] L. Wang and S. D. Stoller. Run-time analysis for
atomicity. volume 89(2) of Electronic Notes in
Theoretical Computer Science. Elsevier, 2003.

[43] L. Wang and S. D. Stoller. Accurate and efficient
runtime detection of atomicity errors in concurrent
programs. In ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming
(PPoPP), pages 137–146, 2006.

[44] D. Wile. Supporting the DSL Spectrum. Journal of
Computing and Information Technology, 9(4):263–288,
2001.

[45] M. Xu, R. Bod́ık, and M. D. Hill. A serializability
violation detector for shared-memory server programs.
In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages
1–14, 2005.

[46] Y. Yu, T. Rodeheffer, and W. Chen. Racetrack:
efficient detection of data race conditions via adaptive
tracking. In ACM Symposium on Operating Systems
Principles (SOSP), 2005.

