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Abstract

We propose a cooperative methodology for multithreaded software,
where threads use traditional synchronization idioms such as locks,
but additionally document each point of potential thread interfer-
ence with a “yield” annotation. Under this methodology, code be-
tween two successive yield annotations forms a serializable trans-
action that is amenable to sequential reasoning.

This methodology reduces the burden of reasoning about thread
interleavings by indicating only those interference points that mat-
ter. We present experimental results showing that very few yield
annotations are required, typically one or two per thousand lines
of code. We also present dynamic analysis algorithms for detect-
ing cooperability violations, where thread interference is not doc-
umented by a yield, and for yield annotation inference for legacy
software.

Categories and Subject Descriptors F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs–specification techniques; D.2.4 [Software Engineer-
ing]: Software/Program Verification–reliability; D.2.5 [Software
Engineering]: Testing and Debugging–monitors

General Terms Languages, Algorithms, Verification

Keywords Atomicity, Yield Annotation, Cooperability, Paral-
lelism, Concurrency

1. Cooperative Concurrency

The widespread adoption of multi-core processors necessitates
a software infrastructure that can effectively exploit multiple
threads of control. Unfortunately, several decades of experience
has demonstrated that developing reliable multithreaded software
is problematic at best. We argue the difficulties of multithreaded
programming are chiefly due to its preemptive semantics: between
any two instructions of one thread, interleaved instructions of a
second thread could change the state of shared variables, thus influ-
encing the subsequent behavior and correctness of the first thread.
We refer to this situation as an interference point.

Preemptive semantics fails to identify the interference points
that actually impact the behavior of a program: all program points
must be considered as potential interference points, until excluded
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through careful analysis. The pervasive presence of potential inter-
ference points invalidates traditional sequential reasoning. To illus-
trate this difficulty, consider the statement “x++”. Under sequential
semantics, “x++” is a simple increment operation, but under pre-
emptive semantics, “x++” becomes a potentially non-atomic read-
modify-write.

To address this problem, we propose a cooperative methodol-
ogy for developing multithreaded software. The central idea behind
this methodology is that all thread interference should be explicitly
documented with a “yield” annotation. A program is cooperable
if it satisfies this constraint. Yield annotations are purely for doc-
umentation purposes and have no run-time effect. Consequently,
this cooperative methodology does not constrain the programmer’s
ability to use a variety of synchronization idioms (locks, barri-
ers, semaphores, etc) to achieve appropriate parallelism and per-
formance.

The key benefit of explicit yield annotations is that they divide
the execution of every thread into transactions, each consisting of
the sequence of instructions between two successive yield anno-
tations. Since thread interference occurs only at yield annotations,
each transaction is serializable and behaves as if it is executing
serially, without interleaved instructions of other threads. Conse-
quently, the code inside each transaction is amenable to sequential
reasoning.

More generally, sequential reasoning is correct by default. That
is, cooperability guarantees that any section of code unbroken by
yield annotations exhibits sequential behavior. In the presence of
explicit yield annotations, sequential reasoning naturally gener-
alizes into cooperative reasoning, which accounts for explicitly
marked thread interference.

Cooperative concurrency decomposes the difficult problem of
verifying correctness of a multithreaded program into two simpler
subproblems:

1. verifying that the program is cooperable, i.e., that yields docu-
ment all thread interference;

2. and verifying that the program is correct using cooperative
reasoning.

To address subproblem 1, we present COPPER, a dynamic anal-
ysis that detects cooperability violations: undocumented interfer-
ence points. COPPER observes the execution trace of the target pro-
gram, and uses a graph-based algorithm to verify that this observed
trace is serializable. In particular, it reports an error if the yield an-
notations are not sufficient to capture all thread interference.

We present evidence that subproblem 2 is much simpler than
verification under traditional preemptive semantics. We propose in-
terference density as a metric capturing the difficulty of program
reasoning, where the interference density of a program under a par-
ticular semantics is the number of interference points per line of
code under that semantics. Experimental results show that the inter-
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Figure 1. Alternatives to preemptive semantics: one may analyze
or enforce either transactions or yields (transactional boundaries).

ference density for the cooperative semantics is at least an order of
magnitude lower than for the preemptive or atomic semantics: typ-
ically 0.17% of source code lines require yield annotations. Addi-
tionally, we present anecdotal evidence that applying cooperability
to legacy programs reveals bugs. Across 14 benchmark programs,
we found 20 cooperability violations that reflect errors in the code.
Finally, a recently completed user study demonstrated that yield
annotations are associated with a statistically significant improve-
ment in the ability of programmers to identify synchronization de-
fects [29].

When writing new code, a programmer will co-design the algo-
rithm, its synchronization code, and its yield annotations. For large
legacy applications, however, manually writing yield annotations
is rather tedious. To address this problem, we present SILVER, a
dynamic analysis for inferring yield annotations. If an operation
would violate cooperability by causing undocumented thread in-
terference, SILVER automatically inserts an implicit yield right be-
fore that operation, thus avoiding the cooperability violation. Due
to test coverage issues inherent in any dynamic analysis, SILVER

may under-approximate the set of required yields. Nevertheless, we
found the inferred yield annotations to be extremely helpful.

Atomicity, Transactional Memory, and AME. Several prior
techniques have been proposed for controlling thread interference.
Figure 1 summarizes the most closely related proposals, divided
along two orthogonal dimensions: whether transactions are ana-
lyzed or enforced, and whether one specifies transactions (atomic
blocks) or transactional boundaries (yields):

- An atomic block is a code fragment that behaves as if it exe-
cutes serially. While atomicity permits sequential reasoning in-
side each atomic block, preemptive reasoning is still required
outside atomic blocks, and so atomicity requires both kinds of
reasoning. In contrast, cooperative reasoning is uniformly ap-
plicable to all code under our proposed methodology.

- Transactional memory offers an enforcement model of execu-
tion for transactions, where the runtime system guarantees that
atomic blocks satisfy serializability. However, finding a robust
semantics for transactional memory has proven elusive, while
performance issues hold back widespread adoption.

- Automatic mutual exclusion (AME) inverts transactional mem-
ory by executing all code in a single transaction, unless other-
wise specified. We are inspired by AME’s feature of safety by
default but are focused on analysis not enforcement, since en-
forcement mechanisms may not be appropriate for legacy pro-
grams. Current AME implementations leverage transactional
memory implementations, with the problems listed above.

Section 8 contains a more detailed comparison with related work.

Cooperability for Legacy Programs. We believe that our pro-
posed cooperative methodology is well-suited for ongoing mainte-
nance of legacy programs. Understanding legacy programs is often

difficult, due to poor documentation and programmer churn. We
provide a low-cost migration path for enabling cooperative reason-
ing in legacy programs: SILVER can provide the initial yield anno-
tations to achieve cooperability, while COPPER can verify cooper-
ability upon subsequent modification.

Note that the inferred yield annotations do not affect the exe-
cution semantics of a program. This analysis approach to coopera-
tive semantics distinguishes it from other approaches based on en-
forcement, such as transactional memory, which explicitly change
the execution behavior: transitioning to an enforcement-based ap-
proach is potentially much more disruptive, and may unintention-
ally change the behavior of sensitive legacy applications. Instead,
our approach enables cooperative reasoning while retaining the
same preemptive execution behavior.

Contributions. The key contributions of this paper are:

• We propose a cooperative methodology for developing multi-
threaded software.

• We present dynamic analyses for detecting cooperability viola-
tions (Section 4) and for inferring yield annotations (Section 5).

• We describe the implementation of these algorithms (Sec-
tion 6).

• We show that cooperability results in a substantially lower in-
terference density than preemptive semantics or atomicity (Sec-
tion 7.1).

• We show that across 14 benchmarks, our analyses revealed 20
cooperability violations that are real errors (Section 7.2).

2. Motivating Example

We illustrate the benefits of cooperability using the Buffer class
defined in Figure 2, which implements a single-element FIFO
queue. The class provides blocking dequeue and enqueue meth-
ods, which busy-wait when necessary, along with a nonBlocking-
Dequeue method, which returns null if the queue is empty.

The three columns on the right side of Figure 2 describe where
thread interference may occur under the preemptive, atomic, and
cooperative semantics, respectively. The preemptive column “P”
emphasizes that, in the absence of any analysis, almost every line
of code in the Buffer class has the potential for concurrent threads
to make arbitrary modifications to the program state. Clearly, any
attempt to reason about the behavior of this class needs to begin
with understanding and limiting where thread interference may
occur.

The atomicity column “A” illustrates that the two methods main
and nonBlockingDequeue are not vulnerable to thread inference,
since they are atomic. The busy-waiting methods enqueue and
dequeue are not atomic and so are still vulnerable to pervasive
thread interference.

We could use syntactic atomic statements to limit where inter-
ference may occur in these methods but this approach is unsatis-
factory due to the static scope of atomic blocks and their awkward
interaction with other control constructs. For example, in the fol-
lowing version of dequeue, the atomic blocks clutter the code but
are still inadequate; for example, they suggest that interference may
occur between the initialization of elem and the loop test:

Object dequeue() {
Object elem; atomic { elem = null; }
while (atomic { elem == null }) {

atomic { elem = dequeueNonBlocking(); }
}
atomic { return elem; }

}



Figure 2: Example Program Buffer

public class Buffer {
Object contents = null;

synchronized Object nonBlockingDequeue() {
Object c = contents;
contents = null;
return c;

}

Object dequeue() {
Object elem = null;
while (elem == null) {

yield;
elem = dequeueNonBlocking();

}
return elem;

}

void enqueue(Object o) {
boolean done = false;
while (!done) {

yield;
synchronized (this) {

if (contents == null) {
contents = o;
done = true;

}
}

}
}

public static void main(String[] args) {
final Buffer b = new Buffer();
fork { b.dequeue(); }
fork { b.enqueue(1); }

}
}
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Instead of syntactic scoping, one could use atomic begin and
atomic end statements to delimit atomic blocks, but this approach
is also unsatisfactory. Again taking the dequeue example, the first
atomic begin and last atomic end statement suggest interfer-
ence before and after the method call:

Object dequeue() {
atomic begin;
Object elem = null;
while (elem == null) {

atomic end;
atomic begin;
elem = dequeueNonBlocking();

}
return elem;
atomic end;

}

If we move these statements to the call sites for dequeue, the
nonlocal scoping is awkward. Another problem is that these atomic
statements are easy to abuse and misplace; for example, one might
put code in between two transactions.

The final cooperative semantics column “C” of Figure 2 shows
how yield annotations can precisely and naturally specify thread
interference points in both atomic and non-atomic methods. For
atomic methods, the absence of yield annotations precludes thread
interference. For the two non-atomic methods, interleaved steps of
other threads may cause thread interference, but this interference

appears as if it happens only at the start of each busy-waiting
loop, as documented by the yield annotation. Thus, the cooperative
semantics needs to consider only one point of thread interference,
in contrast to the preemptive or atomic semantics that permit thread
interference at all points in these non-atomic methods.

The notion of cooperability also helps detect concurrency er-
rors. For example, consider the following erroneous version of
dequeue, which busy-waits until the queue is non-empty, and then
calls nonBlockingDequeue:

Object dequeue() {
while (contents == null) { yield; }
return nonBlockingDequeue();

}

Our analysis would detect that this code is not cooperable, since
there is an additional thread interference point at the end of the
while loop that needs to be explicated via the following additional
yield annotation.

Object dequeue() {
while (contents == null) { yield; }
yield;
return dequeueNonBlocking();

}

This yield annotation now clarifies to the programmer that the
buffer state may change between the loop test (contents ==
null) and the call to dequeueNonBlocking, and so helps high-
light the semantic error in the code, whereby a concurrent thread
could remove the buffer contents before dequeueNonBlocking
is called. In comparison, method-level atomicity would not reveal
this error, since the dequeue method is intentionally non-atomic.

3. Defining Cooperative Semantics

In order to present our dynamic analyses, we start by formalizing
the notion of cooperability in terms of execution traces.

3.1 Core Operations

We are interested in analyzing a running program; an operation
is the basic entity of analysis during program execution and rep-
resents the execution of a single atomic instruction. Our dynamic
analyses recognize a concise language of access and synchroniza-
tion operations: threads t and u may read and write shared variables
x, acquire and release mutual exclusion locks m, wait for and no-
tify other threads, and fork a new thread or join (wait) on another
thread’s completion. These operations represent a core subset of the
operations observed during program execution. Volatile variables
are simply treated as shared variables in our analyses. Additionally,
a yield operation indicates when a yield annotation is seen in the
program. These core operations are represented by the grammar:

op ::= read(t , x , v) | write(t , x , v)
| acquire(t ,m) | release(t ,m)
| prewait(t ,m) | postwait(t ,m) | notify(t ,m)
| fork(t , u) | join(t , u)
| yield(t)

Some operations are implicitly accompanied by a yield opera-
tion. For example, a wait call on lock m releases that lock, waits for
another thread to notify m, and then re-acquires m. The execution
of a wait call is represented with two operations: prewait(t ,m)
releases lock m and implicitly may yield to another thread; and
postwait(t ,m) re-acquires m. Similarly, the join operation is pre-
ceded by an implicit yield operation, since the joining thread inten-
tionally blocks until the joinee thread completes.



It is straightforward to add atomic block annotations, such as
atomic begin and atomic end, to the core language [38]. This
extension increases expressivity; e.g., methods may be declared as
atomic. However, we omit this extension for clarity of presentation.

3.2 Conflicting Operations

While an operation is the most basic element of analysis, we are
more interested in the relationship between operations. Each oper-
ation modifies the program state, which captures the value of all
variables and locks in the running program (including the instruc-
tion counter for each thread) at a single point in time.

Two operations that occur in sequence conflict if the resulting
state may differ when the operations are reordered. There are sev-
eral kinds of conflicts: writes to a variable conflict with other ac-
cesses (reads or writes) to that variable; operations on a lock (ac-
quire, release, prewait, postwait, notify) conflict with each other;
forking or joining a thread conflicts with all operations of the target
thread; and operations by the same thread conflict with each other.
Two operations commute if they do not conflict. Either ordering of
a commuting pair of operations results in the same state.

A trace is a sequence of operations that captures an execution
of a running program. We say that two traces are equivalent if
one can be obtained from the other by applying some number of
commutations on adjacent operations in the trace.

The happens-before relation [22] orders conflicting operations:
we say that a happens-before b, or a < b, if a and b conflict,
and a occurs before b in the trace. The happens-before relation is
transitively closed and is a partial order. We use the happens-before
relation to characterize how an operation may influence subsequent
operations in a trace.

3.3 Preemptive and Cooperative Semantics

A scheduling semantics defines the policy for when a context
switch may occur in a program. We formalize two scheduling se-
mantics: preemptive and cooperative.

A preemptive semantics is one where a context switch may
occur after any operation in a trace. Preemptive semantics is the
default execution semantics for multithreaded programs. In this
semantics, a yield does not influence context switching and thus
is a no-op.

Alternatively, in a cooperative semantics, context switching
may occur either at a yield operation or at thread termination. The
yield operations observed for a single thread, in conjunction with
the thread’s start and end, delimit sequences of operations; each
sequence is a transaction. A serial trace is thus a sequence of trans-
actions. We relate preemptive and serial traces as follows: a trace,
perhaps preemptively scheduled, is serializable if it is equivalent to
a serial trace.

Figure 3 illustrates this notion of a serial trace. In particular,
trace A is preemptive and arbitrarily interleaves the operations
of the two threads. By repeatedly swapping adjacent commuting
operations, however, we can transform trace A into the equivalent
trace B. For example, Thread 2’s accesses to done are local, and
thus commute with any operation by Thread 1. The resulting trace
B is serial, since it is a sequence of transactions. We then say that
the original trace A is serializable, since it is equivalent to the serial
trace B.

We say a program is cooperable if it only generates serializable
traces. This notion of cooperable programs significantly simplifies
reasoning about program correctness. In particular, even though
a cooperable program can execute with preemptive semantics on
modern multicore hardware, we may use the simpler cooperative
semantics to understand the program’s behavior. Furthermore, co-
operability violations often reveal synchronization errors that result
in unintended thread interference (Section 7.2).

Figure 3: Trace of Buffer.main
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(A) Observed preemptive trace
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(B) Equivalent serial trace

4. Cooperability Checking

This section presents a dynamic analysis, called COPPER, for de-
tecting cooperability violations by observing a program trace. Con-
ceptually, our analysis maintains a graph structure representing the
happens-before relation on transactions, where each node corre-
sponds to some transaction. We abuse terminology slightly to say
that transaction e1 happens-before transaction e2 if e1 contains
an operation that happens-before an operation in e2. Our analy-
sis checks for a cycle between transactions e1 and e2, where e1

happens-before e2, yet also e2 happens-before e1. This type of sit-
uation may occur, for example, when operation a in e1 happens-
before an operation b in e2, and b happens-before an operation c in
e1. Such a cycle implies that the trace is not equivalent to any se-
rial trace, since this cyclic ordering prevents one transaction from
being commuted to occur entirely before the other. Our analysis for
checking cooperability reports exactly this situation: a cooperabil-
ity violation.

In order to precisely describe and discuss our analysis, we
formalize the analysis state as follows. The domain Txn is a set
of transactions or nodes in our analysis. Sometimes there does not
exist an transaction to refer to, for example, the transaction of the
last write for a variable that has not yet been written. We use ⊥ to
denote this situation, and use Txn⊥ = Txn ∪ {⊥}. Our analysis
state has 5 components:



• Ct : Txn identifies the current transaction for each thread t.
Initially, every thread t starts with a fresh transaction.

• Um : Txn⊥ identifies the last transaction to release (or unlock)
each lock m. Initially, every lock m is not held so Um = ⊥.

• Rx,t : Txn⊥ identifies the last transaction of a thread t that
reads each variable x. Initially, Rx,t = ⊥.

• Wx : Txn⊥ identifies the last transaction that wrote to each
variable x. Initially, Wx = ⊥.

• H ⊆ Txn × Txn tracks the transaction-based happens-before
relation. For efficiency, transitive edges are not explicitly added
to H, and so H∗, the transitive closure of H, represents the
happens-before relation on transactions. Initially, we have H =
∅.

We present the COPPER algorithm for checking cooperability in
Figure 4. COPPER is shown as a function analyze that processes
each successive operation in a trace, and which has cases for each
type of operation. The algorithm is designed to maintain each com-
ponent in the analysis state for the purpose of accurately tracking
the happens-before relation on transactions. In particular, we moni-
tor the H component for a cycle. Whenever COPPER encounters an
operation that conflicts with a previous operation, it tries to add the
necessary happens-before edge between transactions to H. Since
the happens-before relation is lifted from operations to transactions
and the algorithm checks for cycles in this relation, we must take
care not to accidentally add self-edges. We use the binary ⊎ opera-
tor to add a set of edges E ⊆ Txn⊥×Txn⊥ to the happens-before
graph H in a safe manner:

H ⊎ E
def
= H ∪ {(n1, n2) ∈ E | n1 6= n2, n1 6= ⊥, n2 6= ⊥}

Three types of operations start a new transaction: yield, prewait,
and join. The analyze case for yield creates a fresh node n, adds
the appropriate intrathread edge to H, and updates Ct with the fresh
node. The analyze cases for prewait and join contain a call to
analyze(yield(t)) that reflect their implicit yield annotations.

Three types of operations may introduce a cycle in the happens-
before graph: read, write, and acquire. These operations all can
cause thread interference by racing to access a shared variable or
acquire a lock. Figure 5 shows the function addInEdges(t, N),
which adds an edge from each node n ∈ N to Ct, and also checks
for and handles cooperability violations. When adding an edge that
would create a cycle, addInEdges detects this situation and does
not add that edge, in order to preserve the acyclicity of H; instead,
it reports a cooperability violation.

The analyze case for read(t , x , v) adds a happens-before edge
from Wx, the last transaction to write to x, to the current trans-
action, via a call to addInEdges. Next, Rx,t is updated with the
current transaction Ct, reflecting the last read operation of x by t.

Similarly, the analyze case for write(t , x , v) adds happens-
before edges from Wx and Rx,t′ to Ct, because the write operation
conflicts with the prior write and also all prior reads. Next, Wx

is updated with the current transaction Ct, reflecting the last write
operation of x.

The analyze case for acquire(t ,m) processes the happens-
before edge between the last release of m and the current acquire
operation by t. The corresponding case for release(t ,m) simply
stores the last transaction that released m.

As discussed in Section 3.1, a prewait operation can be viewed
as a release followed by a yield, and a postwait operation re-
acquires the released lock. The analyze case for notify is a no-op,
since notify does not release the lock.

The analyze case for fork(t , u) adds a happens-before edge
from the forking thread t to the first transaction of the forked thread
u, which is always fresh. Similarly, the case for join(t , u) adds a

Figure 4: COPPER Cooperability Checking Algorithm

analyze yield(t):
fresh n

H ← H⊎ {(Ct, n)}
Ct ← n

analyze read(t , x , v):
addInEdges t {Wx}
Rx,t ← Ct

analyze write(t , x , v):
addInEdges t {Wx}
addInEdges t {Rx,t′ | t′ ∈ Tid}

Wx ← Ct

analyze acquire(t ,m):
addInEdges t {Um}

analyze release(t ,m):
Um ← Ct

analyze prewait(t ,m):
analyze release(t ,m)
analyze yield(t)

analyze postwait(t ,m):
analyze acquire(t ,m)

analyze notify(t ,m):
no-op

analyze fork(t , u):
H ← H⊎ {(Ct, Cu)}

analyze join(t , u):
analyze yield(t)
H ← H⊎ {(Cu, Ct)}

Figure 5: addInEdges for Detecting Cooperability Violations

addInEdges t N =
if cycle in H⊎ {(n, Ct) |n ∈ N}

report cooperability violation
else

H ← H⊎ {(n, Ct) |n ∈ N}
endif

happens-before edge from the last transaction of the joinee thread
u to the current transaction of t, the joining thread. However, since
we model join using an implicit yield, the case includes a call to
analyze(yield(t)).

5. Yield Inference

A cooperability checker is useful for verifying that an execution
trace is serializable and that thread interference is documented
via yield annotations. For legacy programs, however, such yield
annotations may not exist, and manually annotating such programs
imposes a burden. SILVER, our yield inference algorithm, alleviates
this annotation burden.

The SILVER algorithm mostly behaves identically to the COP-
PER checking algorithm, until a cooperability violation appears. We



Figure 6: addInEdges for Inferring Yield Annotations

addInEdges t N =
if cycle in H⊎ {(n, Ct) |n ∈ N} then

insert a yield just before the current operation
analyze yield(t)

endif
H ← H⊎ {(n, Ct) |n ∈ N}

have modularized these two algorithms so that their difference is
isolated to the function addInEdges. Figure 6 presents the SILVER

version. When the analysis of a particular operation would cause a
cooperability violation and associated cycle in the happens-before
graph, this function automatically inserts a yield operation right be-
fore the current operation op. This new yield operation means that
op now executes in a fresh transaction, and precludes the potential
for incoming edges (from nodes in N to that fresh transaction) from
forming a cycle.

It is trivial to make any program cooperable: simply add enough
yields to the program. Too many yields, however, are counterpro-
ductive and noisy. SILVER counteracts noise by minimizing the
number of yield annotations inferred, adding one only when neces-
sary. Although we have not yet formalized this notion of minimal-
ity, our experiments demonstrate that SILVER infers a small number
of yield annotations.

6. Implementation

We implemented the COPPER cooperability checker and SILVER

yield inference algorithm using the ROADRUNNER framework [14]
for dynamic analysis of multithreaded Java programs. ROADRUN-
NER dynamically instruments the target bytecode of a program dur-
ing load time. The instrumentation code creates a stream of events
for field and array accesses, synchronization operations, thread
fork/join, etc, and the COPPER and SILVER tools operate on this
event stream as it is created.

The implementation closely follows the analysis. The happens-
before relation on transactions H is represented by a list of ancestor
transactions: if transaction e1 happens-before transaction e2, then
e2’s ancestor set will contain e1. The ancestor sets are transitively
closed, making cycle detection an O(1) operation.

Scaling the implementation to handle realistic benchmark pro-
grams is a key challenge, especially for memory usage. One prob-
lem is object churn, where short-lived transactions are created and
then immediately thrown away. Object churn puts pressure on the
garbage collector, and may adversely impact performance. Instead,
SILVER and COPPER statically allocate a set of transaction ob-
jects. Every transaction starts free, is inUse when referenced in
the analysis, and becomes free when no longer referenced. Refer-
ence counting of in-edges determines when an inUse transaction
becomes free: since a completed transaction with no in-edges will
never incur additional in-edges in the future, such transactions are
ineligible to form a cycle and may be marked as free.

Scalability could also suffer if too many transactions are inUse
simultaneously, saturating the statically allocated set of transac-
tions. The use of weak references solves this issue in practice by
allowing significantly more transactions to be considered free ear-
lier in the trace. In particular, a transaction n referred to by Wx,
Rx,t or Um can be involved in a cycle only if some transaction in
Ct or H refers to n. Our implementation requires reference count-
ing only for Ct and H, and otherwise uses weak references for Wx,
Rx,t and Um.

7. Evaluation

This section compares the number of interference points for co-
operability versus preemptive semantics and atomicity, and eval-
uates the effectiveness of cooperability at finding synchronization
defects. We also briefly discuss the performance of our analysis
tools.

We used a collection of multithreaded Java benchmarks ranging
in size from 1,000 to 50,000 lines of code. These benchmarks
include: colt, a library for high performance computing [36];
hedc, a warehouse webcrawler for astrophysics data [36]; raja,
a raytracer program [17]; elevator, a real-time discrete event
simulator [36]; mtrt, a raytracer program from the SPEC JVM98
benchmark suite [32]; and several benchmarks (crypt, lufact,
moldyn, montecarlo, raytracer, series, sor, sparse) from
the Java Grande set [20] (configured with four threads and the base
data set). Included is a large reactive benchmark: jigsaw, W3C’s
web server [33], coupled with a stress test harness.

Excluding the Java standard libraries, all classes loaded by
benchmark programs were instrumented. In all experiments, we
used a fine granularity for array accesses, with a distinct shadow
object for each element in an array. We ran these experiments on a
machine with 12 GB memory and eight cores clocked at 2.8 GHz,
running Mac OS X 10.6.1 with Java HotSpot Server VM 1.6.0.

We report the loaded lines of code (LLOC) for each benchmark
in Column 3 of Figure 7, a line count of Java source files that have
actually been loaded by the JVM. The loaded lines of code provide
a more accurate impression of a program’s size as compared to raw
line count, which may include vast amounts of dead code.

7.1 Interference Density

Cooperability greatly reduces the number of interference points
in a program, compared to atomicity or preemptive semantics. To
substantiate this claim, we collected data about our benchmark set
to compare the number of interference points for three distinct
semantics:

• In preemptive semantics, every access to a shared variable and
every lock acquire is a potential point of interference. We count
the number of syntactic program locations corresponding to ac-
cess and acquire operations seen in the trace. We note that this
count already excludes many operations that do not cause in-
terference, such as operations on local variables, lock releases,
method calls, etc.

• In atomic semantics, a context switch may occur only outside
an atomic block; thus, in this semantics, we count thread inter-
ference points that occur outside atomic methods. The knowl-
edge of which methods are non-atomic is obtained a priori by
running an atomicity checker [16]. In addition, when in a non-
atomic method, we also count every call to an atomic method,
since thread interference may occur just before such a call.

• In cooperative semantics, we report the number of yield anno-
tations inferred by SILVER on unannotated code.

To collect this data, we ran SILVER on unannotated code to ob-
tain a complete set of yield annotations sufficient to guarantee se-
rializability for the observed trace. Because SILVER is a dynamic
analysis, it may infer only a subset of the necessary yield annota-
tions for the program. In practice, we find that the inferred yield
annotations are a fairly precise underapproximation: COPPER typi-
cally verifies subsequent runs over this set of inferred yields. Also,
a quick experiment shows that the number of additional yield an-
notations inferred in later executions diminishes significantly (Fig-
ure 8). Note that due to scheduling nondeterminism, COPPER may
observe a sufficiently different trace than SILVER, and thus may
occasionally report a new cooperability violation.



Preemptive Atomic Cooperative

Program
Thread
Count

Size
(LLOC)

Points Density Points Density Points Density
Intended
Yields

Errors

sparse 4 712 196 27.53% 49 6.88% 1 0.14% 1 0
sor 4 721 134 18.59% 49 6.80% 4 0.55% 3 1
series 4 811 90 11.10% 31 3.82% 1 0.12% 1 0
crypt 7 1083 252 23.27% 55 5.08% 2 0.18% 2 0
moldyn 4 1299 737 56.74% 64 4.93% 4 0.31% 4 0
elevator 5 1447 247 17.07% 54 3.73% 3 0.21% 1 2
lufact 4 1472 242 16.44% 57 3.87% 4 0.27% 4 0
raytracer 4 1862 355 19.07% 65 3.49% 4 0.21% 3 1
montecarlo 4 3557 377 10.60% 41 1.15% 2 0.06% 1 1
hedc 6 6409 305 4.76% 76 1.19% 4 0.06% 3 4
mtrt 5 6460 695 10.76% 25 0.39% 2 0.03% 1 1
raja 2 6863 396 5.77% 45 0.66% 1 0.01% 1 0
colt 11 25644 601 2.34% 113 0.44% 16 0.06% 16 0
jigsaw 77 48674 3415 7.02% 550 1.13% 52 0.11% 34 10
Total/Averages 107014 8042 16.50% 1274 3.11% 100 0.17%

Figure 7. Interference Points and Interference Density Under Preemptive, Atomic, and Cooperative Semantics
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Figure 8. The yield annotations inferred by SILVER for jigsaw
are stable over multiple runs.

In order to quantify the relative frequency of interference points,
we use interference density, the number of interference points per
loaded line of code. Interference density provides a way to compare
the amount of interference across different benchmarks.

Our results are listed in Figure 7, which compares the number of
interference points and interference density across our benchmark
set according to the three semantics. For preemptive semantics,
the interference density ranges from at least 2% to over 50%, and
gives a measure of the high cost of reasoning about programs in a
preemptive manner. For atomic semantics, the interference density
drops by roughly an order of magnitude, but can still reach almost
7% of loaded lines of code, implying that 1 out of every 14 lines
must be scrutinized to understand the effects of thread interference,
even with method-level atomicity annotations.

For cooperative semantics, the interference density drops by a
further order of magnitude as compared with atomic semantics. In-
deed, cooperative interference density never rises above 0.6% for
our benchmark set, implying that fewer than 6 lines per thousand
impact the meaning and understandability of a program with re-
spect to nondeterministic scheduling. These results show that co-
operability significantly reduces the number of thread interference
points to consider in multithreaded programs, as compared to prior
techniques. Put differently, yield annotations are relatively rare, and
thus do not degenerate into noise.

7.2 Defect Detection

Legacy programs can be difficult to understand, and are often sen-
sitive to change. A set of intended yield annotations for such a
program assists in understanding thread interference without per-
turbing preemptive executions. Furthermore, given a legacy pro-
gram with intended yield annotations, cooperability violations cor-
respond to likely bugs.

Our analysis approach to cooperative semantics can be con-
trasted with other approaches based on enforcement, such as au-
tomatic mutual exclusion, which explicitly change the execution
semantics. Transitioning to an enforcement-based approach is po-
tentially disruptive, and may unintentionally change the execution
behavior for legacy applications.

To evaluate the effectiveness of cooperability at finding and
understanding bugs, we first ran SILVER on our benchmark set and
by manual inspection distilled a set of intended yields from the
inferred yield annotations, as shown in Column 10 of Figure 7.
These intended yields can differ from the inferred ones, due to
the choice of yield annotation placement. We then ran COPPER

on the resulting yield-annotated program and inspected the results;
Column 11 summarizes the number of code bugs that we detected,
a number of which reflect known race conditions and destructive
atomicity violations.

sparse, series, crypt, raja. The intended thread interference in
these programs are all due to the implicit yielding before a join.

sor. For the sor benchmark, SILVER reports four yield annota-
tions. One is caused by a join’s implicit yield. The other three yield
annotations are inferred near code intended to act as a barrier. Of
these three, two are intended, while the remaining yield annotation
actually reflects an error in the barrier implementation. The barrier
in sor fails to synchronize accesses to individual non-volatile array
elements, and introduces nondeterminism into sor.

moldyn, lufact. All of the inferred yield annotations for moldyn
and lufact are situated in barrier code. After manually adding
yield annotations before and after barrier operations, COPPER ver-
ified the serializability of the observed traces.

elevator. SILVER inferred several yield annotations that implicate
two methods as non-atomic (claimUp and claimDown), both of
which have known destructive atomicity violations.



Base Time Slowdown Base Memory Memory Overhead
Program (ms) EMPTY VELODROME COPPER (MB) EMPTY VELODROME COPPER

colt 16108 0.8 0.8 0.8 34 2.1 3.1 3.9
crypt 321 6.9 20.0 20.8 34 3.7 12.6 13.3
lufact 358 4.5 7.6 7.9 24 1.9 3.1 4.0
moldyn 806 8.8 12.2 12.9 23 2.0 2.8 3.8
montecarlo 1220 5.0 10.6 11.2 116 5.2 8.4 8.0
mtrt 498 7.6 9.4 9.7 48 2.4 4.1 4.5
raja 420 6.0 7.6 7.4 34 1.7 2.2 2.8
raytracer 770 5.4 23.9 16.5 32 1.4 1.9 2.6
series 1111 1.7 2.1 2.1 22 1.9 2.6 3.6
sor 465 3.9 11.3 21.7 35 1.7 3.1 3.7
sparse 457 6.1 16.3 16.9 36 1.8 3.6 4.3
Average 5.2 11.1 11.6 2.3 4.3 5.0

Figure 9. Time and Space Overheads for EMPTY, VELODROME, and COPPER.

raytracer. This program needs four yield annotations for ensuring
cooperability: two are in barrier code, one is an implicit yield
associated with a join, and one corresponds to a known destructive
race on JGFRayTracerBench.checksum1.

montecarlo. SILVER inferred two yield annotations, correspond-
ing to a join and a racy variable access.

hedc. The hedc benchmark has four racy variables, some of
which cause erroneous behavior. After adding a set of intended
yields to the program, COPPER issued thread interference reports
corresponding to the four racy variables.

mtrt. SILVER reported the implicit yield on a join and inferred a
yield annotation for a known racy variable access.

colt. We believe that all the inferred yield annotations in the colt
benchmark are intentional.

jigsaw. For the jigsaw yield annotations, five are caused by
waits, and 29 are interference points induced by acquire opera-
tions. The remaining 18 inferred yield annotations are caused by
8 racy variables and 2 destructive atomicity violations. For exam-
ple, thread interference just before a call to updateStatistics()
in org.w3c.jigsaw.http.httpd could result in slightly out-
dated statistics information. Thread interference between check-
ing whether log is null and accessing log in org.w3c.jigsaw.-
http.CommonLogger could cause a null pointer exception, if the
shutdown method runs concurrently.

While finding bugs in code is clearly important, relating how
such bugs interact with the rest of the program is just as impor-
tant for understanding and fixing them. A maintenance strategy
based on cooperability improves over existing analyses by provid-
ing a richer context for understanding bugs. COPPER’s reports co-
hesively connect race conditions and atomicity violations: thread
interference is often caused by a race on a variable or lock, while
the call stack at the interference point informs us which methods
are non-atomic due to that race.

As an additional data point regarding the benefits of cooperabil-
ity, we recently conducted a user evaluation on the effectiveness
of cooperability for highlighting concurrency bugs [29]. We found
that for 2 out of 3 sample programs, yield annotations were asso-
ciated with a statistically significant improvement in bugs found,
compared to un-annotated programs. This study demonstrates the
potential of cooperability to significantly improve understanding of
thread interference.

7.3 Performance

Figure 9 reports on the performance of our analyses. We compare
with the VELODROME atomicity checker [16]. VELODROME is

a good choice for comparison, since COPPER and VELODROME

check related properties, and both use similar cycle-based tech-
niques. For each of the compute-bound benchmarks, we report
on the running time and memory usage of that benchmark (with-
out instrumentation), and on the slowdown and memory overhead
incurred by ROADRUNNER when running with the EMPTY tool
(which just measures the instrumentation overhead but performs no
dynamic analysis); with VELODROME; and with COPPER. We used
an implementation of FASTTRACK [13], a modern precise race
detector, to filter out non-racy accesses for COPPER and VELO-
DROME; these accesses form the majority of operations in a trace.

The results show that COPPER has an acceptable slowdown and
memory overhead for this type of dynamic analysis, and exhibits
a similar performance profile to VELODROME. The average slow-
down for COPPER was 11.6x, as compared with a slowdown for
VELODROME of 11.1x. Similarly, the average memory overhead
for COPPER was 5.0x, as compared with a memory overhead for
VELODROME of 4.3x. The SILVER inference algorithm exhibits
performance similar to the COPPER checking algorithm, which is
unsurprising since the two algorithms are closely related.

8. Related Work

Cooperability The notion of cooperability was partly inspired
by recent work on automatic mutual exclusion, which proposes
ensuring mutual exclusion by default [18, 1]. A major difference
is in the meaning of a yield annotation: automatic mutual exclusion
enforces a yield at runtime, while COPPER checks that such a yield
annotation guarantees an equivalent serial trace. In prior work, we
presented a type and effect system for cooperability [38], which
is complementary to the dynamic analysis approach explored in
this paper. Kulkarni et al. explore task types, a data-centric method
for obtaining pervasive atomicity [21], a notion closely related to
cooperability. In their system, threading and data sharing are made
explicit via task types, and a combination of type checking and
runtime monitoring guarantee correct sharing between threads.

Cooperative semantics have been explored in various settings;
for example in high scalability thread packages [35] and as alter-
native models for structuring concurrency [3, 4, 9]. TIC, a coop-
erative extension of transactional memory [31], uses a wait con-
struct to suspend a transaction and allow conditional interference.
Jalbert and Sen focus on simplifying buggy traces by minimizing
context switches, which can be understood as providing an equiv-
alent (buggy) trace under a cooperative scheduler [19]. Our work
on cooperability is complementary to this work: serializable traces
are already partially simplified since context switches need only be
considered at yield annotations.



Race Freedom A data race is a well-known situation where two
threads simultaneously access a shared variable without synchro-
nization, and at least one thread is writing to that variable. Races
often reflect incorrect synchronization, and the absence of races
guarantees that a program’s behavior can be understood as if it is
executing on a sequentially-consistent memory model [2].

A large amount of literature has been devoted to finding and
fixing data races in an efficient manner: see, for example [13, 27, 8].
However, race-free programs may still exhibit unintended thread
interference, because race freedom is a low-level property dealing
with memory accesses. That is, higher-level semantic notions of
thread non-interference are not addressed by race freedom.

Recent work by Matsakis and Gross address the notion of time
in a type system by making execution intervals and the happens-
before relation between intervals [24] explicit. This approach in-
creases the annotation burden in favor of increased precision and
modularity in statically analyzing for data races.

Atomicity A variety of tools have been developed to detect atom-
icity violations, both statically and dynamically. Static analyses for
verifying atomicity include type systems [15, 30] and techniques
that look for cycles in the happens-before graph [11]. Compared
to dynamic techniques, static systems provide stronger soundness
guarantees but typically involve trade-offs between precision and
scalability.

Dynamic techniques analyze a specific executed trace at run-
time. Artho et al. [5] develop a dynamic analysis tool to identify
one class of “higher-level races” using the notion of view consis-
tency. Wang and Stoller describe several dynamic analysis algo-
rithms [37]. Sen and Park [26] develop a tool called AtomFuzzer
which attempts to schedule an atomicity violation into exhibiting
a real error. The closest atomicity analysis is VELODROME [16],
which uses a cycle-based algorithm with transactions as nodes.
Farzan and Madhusudan [12] provide space complexity bounds for
a similar analysis.

Software transactional memory [23] is a concurrency program-
ming model proposed as an alternative to lock-based concurrency,
where the runtime system ensures the atomic execution of trans-
actions. Some recent work has been devoted to addressing the se-
mantic difficulties of software transactional memory [31] and mak-
ing it compatible with lock-based programming [34]. The relation-
ship between atomicity and transactional memory is analogous to
that between cooperability and automatic mutual exclusion: soft-
ware transactional memory enforces the atomic execution of trans-
actions, while atomicity guarantees that atomic blocks always exe-
cute as if in such a transaction.

Deterministic Parallelism As other researchers have begun to re-
alize limits of atomicity, there has been renewed focus on check-
ing for deterministic parallelism. SingleTrack [28] goes beyond the
notion of atomicity to check serializability of multithreaded trans-
actions which are also verified to be free of internal conflicts (thus
guaranteeing determinism at the transaction level). Deterministic
Parallel Java [7] introduces a type system to guarantee determinism
by default. Burnim et al. present an assertion-based mechanism for
checking determinism where bridge assertions can be used to re-
late different executions of the same program [10]. Enforcement
schemes for determinism also exist [25, 6].

9. Future Work

One interesting topic for future work is to explore more expressive
yield annotations. For example, a join could yield only to the joinee
thread. This way, the use of fork/join parallelism for deterministic
computations would not involve the creation of yield annotations.
Alternatively, our analysis could be extended to support annotations
of data or methods as yielding.

A semantics with both yield and atomic annotations would
allow atomic methods to be specified at the interface level and yield
annotations to pinpoint why code is not atomic. We feel that this
semantics would combine the strengths of each type of annotation.

When inferring yield annotations, there are multiple choices of
where to insert a yield annotation, and another area of future work
is to insert yield annotations higher in the call stack, for example,
at a call to a synchronized method. We are still investigating which
annotation placement is the most useful to infer.

Inspired by the results of our prior user study, we would like to
investigate some of these upcoming design decisions through more
user studies. Also, we are exploring the development of program
logics for cooperability, perhaps extending Hoare logic, to help
clarify the benefits of cooperative reasoning.
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